Assumptions Behind the Linear Regression Model

Pfeifer, Phillip E.

  • ケース
DARDEN

In a previous note, “Introduction to Least-Squares Modeling” (UVA-QA-0500), we have seen how least squares can be used to fit the simple linear model to historical data. The resulting model can then be used to forecast the next occurrence of Y, the dependent variable, for a given value of X, the independent variable. This use of least squares to fit a forecasting model requires no assumptions. It can be applied to almost any situation, and a reasonable forecast results. At this level of analysis, least-squares modeling is equivalent simply to fitting a straight line through a cloud of points and interpolating or extrapolating for a new value of Y for a given X using the fitted line.

出版日
1991/04
改訂日
2006/03
領域
経営・戦略
ボリューム
10ページ
コンテンツID
CCJB-UVA-QA-0271
オリジナルID
UVA-QA-0271
ケースの種類
Case
言語
英語
カラー
製本の場合、モノクロ印刷での納品となります。

関連ケース